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Abstract. In literature, surface tension has been investigated mainly from a Thermodynamics standpoint,
more rarely with kinetic methods. In the present work, surface tension of drops is studied in the framework
of kinetic theory, starting from the Sutherland approximation to Van Der Waals interaction between
molecules. Surface tension is calculated as a function of drop radius: it is found that it approaches swiftly
an asymptotic value, for radii of several times the distance of minimum approach D of the Sutherland
potential. This theoretical asymptotic value is compared to experimental values of surface tension in plane
surfaces of a few liquids, and is found in reasonable agreement.

PACS. 68.03.Cd Surface tension and related phenomena – 05.70.Np Interface and surface thermodynamics

1 introduction

Droplets in the form of sprays occur in nature, for in-
stance, as clouds, fogs and rain, as well as in numerous
technical applications, such as fuel combustion, or spray
painting and many, many others. Also for medical appli-
cations, the surface tension of biological liquids is impor-
tant. On the other hand, measuring the surface tension of
droplets is very difficult, as witnessed by the lack of exper-
imental data in literature: hence the interest in analytical
expressions to calculate it. Deriving one such analytical
expression is the aim of this work.

The effect of curvature on surface tension has been in-
vestigated widely in the 50’s, but mainly within the frame-
work of Thermodynamics (see, e.g., [1,2]). Some studies
have taken the point of view of kinetic theory [3,4]. More
recent work investigates surface tension, in plane geome-
try, from the point of view of kinetic theory, making use
of the Sutherland potential [5]; still much work is being
done taking the Thermodynamics standpoint (see for in-
stance [6–8]). In the present work the problem is studied
through kinetic equations derived using the following sim-
plifying assumptions:

1) Free volume method [1]. In this approximation, the
drop is considered free from the influence of the sur-
rounding, as if it were “in vacuum” or in “free space”.
That is, the pressure of the external vapor is so low
that it can be neglected in the calculation of the sur-
face tension; likewise, all exchanges with the exterior
of the drop are neglected as well. This approximation
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can be bettered including the molecular exchange with
the surrounding atmosphere [9]. This effect might form
the object of subsequent work.

2) Uncorrelated molecules. This assumption is dic-
tated by two considerations: first, the double distribu-
tion function (or pair distribution function, as it often
referred to) is not well known as it can be calculated
exactly only for extremely simplified situations. Albeit
it is almost invariably called upon, still the assump-
tions made to calculate it are often such as to render
its benefits very limited; secondly, the importance of
correlation can be judged from the ratio γ between the
potential energy at the average intermolecular distance
and the average kinetic energy of molecules [10,11]:

γ =
Φ (r0)
3
2KBT

. (1)

The average intermolecular distance r0 can be esti-
mated, as usual, from the number density n as n− 1

3 .
As will be shown in Section 4, where γ is calcu-
lated for several cases, this ratio is of order unity, as
might have been expected: therefore, correlation be-
tween molecules might play some role. However, it will
be neglected here as a first approximation.

3) Constant density. The number density will be con-
sidered uniform throughout the volume of the drop:
this approximation might turn out questionable at the
interface, particularly in view of the fact that surface
tension is, after all, an interface effect. This assump-
tion will be used as a first approximation, and it will
be evaluated in the discussion of the results.
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Fig. 1. Schematic representation of surface tension.

4) Sutherland potential. The intermolecular Van der
Waals forces are modeled with the Sutherland poten-
tial. This assumption could be bettered using the full
Lennard-Jones potential, however at the cost of greater
mathematical difficulties; on the other hand, it can be
argued that the error introduced using the Sutherland
potential, with suitable parameters, is a reasonable
price to pay for the mathematical simplification, which
allows solution in closed form. As will be shown in the
last section, the results obtained are in very reasonable
agreement with experimental data.

In the following sections, a simple method will be derived
within the approximations discussed above, to obtain a
simple expression for the surface tension as a function of
radius. In fact, experimental data on surface tension of
droplets are unavailable in literature, and in the present
work comparison will be made only with data on plane
surfaces, which are abundant and readily available. As
the radius becomes larger, the value of surface tension ap-
proaches that of a plane surface. Calculations presented
for several different liquids, in the large radius limit, are
consistent with experimental results for plane surfaces.

2 Governing equations

One useful way to look at surface tension is as follows.
Consider a drop (which in the present framework will be
perfectly spherical), a plane through the drop center, and
the circle intersection of the plane with surface of the drop.
This circle divides the spherical surface of the drop into
two halves: one can imagine to separate the two halves,
with a motion perpendicular to the dividing plane, and
measure the force that has to be overcome to achieve the
separation. The surface tension can then be calculated as
the ratio of this force (which is, in turn, perpendicular to
the dividing plane) to the length of the circle. A schematic
representation of this concept is shown in Figure 1.

With this picture in mind, the following approach will
be taken in the present work: consider the two aforemen-
tioned half shells (without loss of generality, one may call
them upper and lower half shell, thinking of the dividing
plane as being horizontal), and take any one molecule ly-
ing on the circle, say in the lower half shell. There is a
force acting on this molecule due to the interaction with

Fig. 2. A section through the drop is represented (that can be
chosen arbitrarily as the plane ϕ = 0–ϕ = 180), to define the
geometrical quantities used in the text.

all the molecules in the upper half drop, and the com-
ponent of this force that is perpendicular to the dividing
plane can be calculated: to give it an easy name, it will be
called “tangential force” in the remainder of this paper.
Clearly, due to the symmetry of the problem this tangen-
tial force will be the same whichever molecule happens to
be selected on the circle. If then the number of molecules
per unit length of the circle can be estimated, the surface
tension can be calculated as the product of this number
times the tangential force. The first task is therefore the
calculation of the tangential force.

Consider a spherical droplet of radius R centered in the
point O, and a point P at a distance r from O, with r ∈
[0, R]. A system of spherical coordinates can be defined,
with origin in P and the O–P direction as the polar axis, as
depicted in Figure 2. The ϕ = 0 half-plane can be chosen
arbitrarily, due to the spherical symmetry of the system.

Any point Q within the drop that lies on the ϕ = 0
half-plane can then be described uniquely with the pair of
coordinates ρ and ϑ (or µ = cosϑ) as defined in Figure 1.

If forces between particles are purely central forces,
i.e., depending only on a given power α of the distance,
then the force due to the attraction of a particle in Q on
the particle at P can be written as

FQP =
G

ρα
ρ̂ (2)

as it is directed from P to Q. In spherical coordinates, the
half circle on the ϕ = 0 half-plane depicted in Figure 1 is
described by the equation

ρ =
√

(µr)2 + (R2 − r2)2 − µr (3)

or equivalently

µ =

(
R2 − r2

) − ρ2

2rρ
(4)

therefore the domain corresponding to the intersection of
the drop with the half-plane is defined as

µ ∈ [−1, 1] ; ρ ∈
[
0,

√
(µr)2 + (R2 − r2)2 − µr

]
(5)
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or equivalently

ρ ∈ [0, R + r] ; µ ∈
[
−1, min

{
1,

(
R2 − r2

) − ρ2

2rρ

}]
.

(6)
If there are n (r1) particles per unit volume (due to the
spherical symmetry the density can only depend on the
radial position r1, and this can be expressed in terms of r,
ρ and µ), in a volume element dV (expressed in spherical
coordinates) at location (ρ, µ, ϕ) there are a number of
particles given by

ndV = n (r1 [r, ρ, µ]) ρ2dρdµdϕ (7)

exerting on the particle at P a force dF

dF =
G

ρα
ndV = Gn (r1) ρ2−αdρdµdϕ. (8)

The component of dF perpendicular to z is:

dF⊥ = dF sin ϑ = Gn (r1) ρ2−α
√

1 − µ2dρdµdϕ. (9)

Consider now a molecule that is lying right on the edge of
one half drop, say at the intersection of the polar axis with
the drop surface. In keeping with the geometry defned in
Figure 2, the horizontal plane corresponds to ϕ = ±π

2 ,
and the tangential force on a molecule on the edge of the
lower half shell is along the ϕ = 0 direction. The tangential
force dFT acting on this molecule due to all elements in
the upper half shell with coordinates (ρ,ϑ), is given by the
integral over ϕ of dF⊥ cosϕ in the upper half of the drop,
i.e., for ϕ ∈ [−π

2 , π
2

]
:

dFT =
∫ +π

2

−π
2

[
Gn (r1) ρ2−α

√
1 − µ2dρdµ

]
cosϕdϕ

= 2Gn (r1) ρ2−α
√

1 − µ2dρdµ. (10)

To calculate the total tangential force on the molecule,
the above expression is to be integrated over ρ and µ. In
the following the density will be considered constant, as
discussed in point 3) in the introduction. Recalling the
expression for the domain in equation (6), noted that in
this case r = R, the following integral is obtained:

FT

2nG
=

∫ 2R

D

ρ2−αdρ

∫ −ρ
2R

−1

√
1 − µ2dµ

=
1
2

∫ 2R

D

ρ2−α

{
arcsin

(−ρ

2R

)

− ρ

2R

√
1 −

( ρ

2R

)2

+
π

2

}
dρ. (11)

Here D is the distance of minimum approach, as will be
discussed in the next section.

Fig. 3. Schematized Sutherland potential.

3 Solution with Van der Waals type forces

Van der Waals interactions are usually represented as a
Lennard-Jones potential [12]

ULJ (r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

. (12)

This last can be approximated by a Sutherland poten-
tial [12], usually written as

US (r) =
{ ∞ r < D

−A
(

D
r

)ω
r ≥ D

(13)

with suitable choice of the (positive) constants ω, A
and D. A condition typically imposed is to conserve the
asymptotic behavior of ULJ, which entails ω = 6 and
A·D6 = 4ε·σ6; a second condition can be chosen as follows:
the rest position of a particle in the field of another parti-
cle is the bottom of the potential well, therefore it seems
reasonable to choose the constants so that this position is
the same in the two cases. Therefore, D = σ · 2

1
6 . With

the above positions the Sutherland potential becomes

US (r) =

{
∞ r < D = σ · 2 1

6

−ε
(

D
r

)6
r ≥ D = σ · 2 1

6 .
(14)

This potential is depicted in Figure 3. This corresponds to
the present model for the force equation (2), with α = 7
and

G = 6εD6. (15)

It is worth pointing out that the length D in the
Sutherland approximation is the minimum possible dis-
tance between two molecules: this is not to be confused
with the average distance r0 between molecules, which is
always larger due to thermal motion. Since D is the dis-
tance of minimum approach, it serves as the lower limit
of the integral in equation (11). Calculating that integral,
and recalling the expression for G in equation (15), the
following expression is obtained for the tangential force
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Table 1. Comparison of calculated and experimental values of surface tension.

Density Lennard-Jone

γ =
Φ(r0)
3
2
KT

Calculated Experimental

[m−3] parameters [13] value value

σ [Å] ε/KB [K] [N/m] [N/m]

Water, 20 ◦C 3.34 × 1028 2.641 809.1 1.4 248 × 10−3 72.75 × 10−3 [14]

Ethanol, 20 ◦C 1.01 × 1028 4.530 362.6 1.5 66.5 × 10−3 22.75 × 10−3 [14]

Acetone, 20 ◦C 0.671 × 1028 4.600 560.2 0.57 61.5 × 10−3 23.70 × 10−3 [14]

Benzene, 20 ◦C 0.677 × 1028 5.349 412.3 2.01 62.0 × 10−3 28.88 × 10−3 [13]

Liquid Oxigen, −183 ◦C 2.14 × 1028 3.467 106.7 1.26 31.2 × 10−3 13.2 × 10−3 [14]

Liquid Nitrogen, −183 ◦C 1.72 × 1028 3.798 71.4 0.94 18.8 × 10−3 6.6 × 10−3 [14]

acting on a molecule:

FT =
3
2
nεD2

⎧
⎨
⎩arcsin

(−D

2R

)

+
D

2R

√
1 −

(
D

2R

)2
[
1 − 2

(
D

2R

)2
]

+
π

2

⎫
⎬
⎭ . (16)

As explained earlier, to obtain the surface tension this
tangential force on a single molecule must be multiplied
by the average number of molecules per unit length of the
circle dividing the two half shells, or in other words, the
inverse of the average distance between molecules along
the circle. This last quantity is estimated in this work as
the average distance between molecules considering a uni-
form density n, in keeping with approximation number 3),
given by n− 1

3 . Therefore, in this approximation the num-
ber of moleules per unit length can be estimated as n

1
3 ,

and the surface tension calculated as

Tsur (R) =
3
2
n

4
3 εD2

⎧⎨
⎩arcsin

(−D

2R

)

+
D

2R

√
1 −

(
D

2R

)2
[
1 − 2

(
D

2R

)2
]

+
π

2

⎫⎬
⎭ . (17)

The graph of the reduced surface tension Tsur

3
2n

4
3 εD2

as a

function of 2R
D , the drop diameter in units of D, is shown

in Figure 4.
As can be gathered from the graph, the surface ten-

sion approaches rapidly the asymptotic value as the drop
diameter grows to only a few tens of times D.

4 Comparison with experimental data

Limiting values of surface tension for large radii have been
calculated from equation (17) for several liquids, and com-
pared with known experimental values for plane surfaces.
The results are shown in Table 1. As can be gathered
from the data reported, the agreement is quite good for

Fig. 4. Reduced surface tension vs. drop diameter in units
of D.

such a qualitative approach, being always within a factor
of 2 to 3 (3.4 for water). As the results depend on the pa-
rameters of the Sutherland potential, agreement might be
improved by a different choice, the one choice made here
being somewhat arbitrary albeit reasonable. In [15], for in-
stance, detailed calculation and comparison with Lennard-
Jones parameters is reported for several inert gases.

On the other hand, the density is indeed essentially
constant throughout the drop except near the boundary,
where it is generally found to decrease [1,5,16–20]. As the
layers close to the boundary give the main contribution
to the integral in equation (14), the actual density profile
should be considered in the integration. This will form the
object of a subsequent work, for the present the following
view will be taken: in the literature, the density is always
shown to decrease rather abruptly near the interface, tak-
ing a relative value at the interface of roughly one half
the bulk value. Therefore, introducing the actual density
in the integral will decrease this latter by a factor that
is between 0.5 and 1. On the other hand, in calculating
the number of molecules per unit length at the surface,
the value of density at the surface must be considered; al-
together then, adding the two effects, the result changes
by a factor of between 0.4 and 0.8, which has the right
magnitude to provide the correction needed for reconcil-
ing calculated values with those found experimentally.
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5 Conclusions

As anticipated in the introduction, aim of this work was to
propose a simple equation for calculating surface tension
in drops as a function of radius. The asymptotic behaviour
for large radii is in very reasonable agreement with exper-
imental data on plane surfaces. This result was obtained
in the simplifying assumptions discussed in the introduc-
tion. Accurate description of the density profile is needed
to improve confidence in the results yielded by the method
proposed.
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